208 research outputs found

    Recent Advances in Processing of Biological Tissues

    Get PDF

    Causal association of gastroesophageal reflux disease with obstructive sleep apnea and sleep-related phenotypes: a bidirectional two-sample Mendelian randomization study

    Get PDF
    BackgroundThe interactions and associations between obstructive sleep apnea (OSA), sleep-related phenotypes (SRPs), and gastroesophageal reflux disease (GERD) are complex, thus it is hard to explore the effect and direction of causalities.Study objectivesA bidirectional Mendelian randomization (MR) study was performed to explore causal associations of GERD with OSA and SRPs (including insomnia, morningness, sleep duration, ease of getting up, daytime napping, daytime dozing, and snoring).MethodsFirst, we gathered summary statistics from publicly available databases. Subsequently, we identified single-nucleotide polymorphisms without strong linkage (r2 ≤ 0.001) by referencing relevant genome-wide association studies that met genome-wide significance criteria. Our primary analysis relied on inverse variance weighted to estimate the causal relationship. To ensure the validity of our findings, we also conducted several sensitivity analyses. These included MR Pleiotropy RESidual Sum and Outlier to detect and correct for potential pleiotropic effects, MR-Egger to assess directional pleiotropy, and weighted median analysis to further evaluate heterogeneity and pleiotropy. For the initial MR analysis, when causality was indicated by the results, instrumental variables that were significantly linked to the aforementioned confounding factors were removed. We will re-analyze the data after excluding outcome-related single nucleotide polymorphisms to confirm that the results are still consistent with the previous results.ResultsGERD was found to increase the risk of OSA (OR = 1.53, 95% CI = 1.37–1.70, p = 5.3 × 10−15), insomnia (OR = 1.14, 95% CI = 1.10–1.19, p = 1.3 × 10−10), snoring (OR = 1.09, 95% CI = 1.04–1.13, p = 6.3 × 10−5) and less sleep duration (OR = 0.94, 95% CI = 0.91–0.97, p = 3.7 × 10−4). According to the reverse-direction analysis, there is an elevated risk of GERD associated with OSA (OR = 1.07, 95% CI = 1.02–1.12, p = 0.005), insomnia (OR = 1.95, 95% CI = 1.60–2.37, p = 1.92 × 10−11) and snoring (OR = 1.74, 95% CI = 1.37–2.21, p = 4.4 × 10−6).ConclusionGenetic susceptibility to GERD can elevate the likelihood of experiencing insomnia, snoring, and OSA, in addition to diminishing sleep duration. Conversely, a reverse MR analysis indicates that ameliorating any one of insomnia, snoring, or OSA can mitigate the risk of developing GERD

    Three-dimensional Pentagon Carbon with a genesis of emergent fermions

    Full text link
    Carbon, the basic building block of our universe, enjoys a vast number of allotropic structures. Owing to its bonding characteristic, most carbon allotropes possess the motif of hexagonal rings. Here, with first-principles calculations, we discover a new metastable three-dimensional carbon allotrope entirely composed of pentagon rings. The unique structure of this "Pentagon Carbon" leads to extraordinary electronic properties, making it a cornucopia of emergent topological fermions. Under lattice strain, Pentagon Carbon exhibits topological phase transitions, generating a series of novel quasiparticles, from isospin-1 triplet fermions, to triply-degenerate fermions, and further to concatenated Weyl-loop fermions. Its Landau level spectrum also exhibits distinct features, including a huge number of almost degenerate chiral Landau bands, implying pronounced magneto-transport signals. Our work not only discovers a remarkable carbon allotrope with highly rare structural motifs, it also reveals a fascinating hierarchical particle genesis with novel topological fermions beyond the Dirac and Weyl paradigm

    Environmentally friendly concrete material with early strength and fast hardening using coal as an aggregate: a case for supporting empty roadways

    Get PDF
    In order to facilitate ventilation or transportation, many coal mines usually excavate an empty roadway in the middle of the mining working face. Under the influence of mining pressure, empty roadways are easily damaged, seriously threatening coal mines’ safety. Because the traditional support method of the empty roadway has the problems of low efficiency, high cost, and low strength, this paper researches the coal-based concrete support material with better effect. The grading test of coal aggregate was carried out, and it was found that the percentage of small-size aggregate greatly influenced the reduction of aggregate porosity in the stacked state. To solve the problems of the high cost of strengthening support methods such as high water material support in empty roadways, which could be more conducive to recovery and reduce coal quality. The research on empty roadways supports concrete material with coal as aggregate, making the working face recover coal resources safely and efficiently. The optimum gradation test of the total is to enhance the strength of support and solve the problem of low power and difficult cementation of coal. Based on the hydration analysis of cementitious material, the coal-based concrete, mainly composed of low-cost slag, is determined. The cementitious material with simple composition, rapid setting, and fast hardening was found. It is proved that the mechanical properties and molding effect of coal-based concrete support composed of gypsum, GGBFS, and clinkercement are better than those of commercial cement. The structural model of “surrounding rock-empty roadways-coal pillar-support” is established. The calculation method and check basis of empty roadways support resistance N1 are obtained. The results of industrial application verified that coal-based concrete could effectively protect empty roadways without affecting the productivity of coal mines

    Recent Advances in Soft Biological Tissue Manipulating Technologies

    Get PDF
    Biological soft tissues manipulation, including conventional (mechanical) and nonconventional (laser, waterjet and ultrasonic) processes, is critically required in most surgical innervations. However, the soft tissues, with their nature of anisotropic and viscoelastic mechanical properties, and high biological and heat sensitivities, are difficult to manipulated. Moreover, the mechanical and thermal induced damage on the surface and surrounding tissue during the surgery can impair the proliferative phase of healing. Thus, understanding the manipulation mechanism and the resulted surface damage is of importance to the community. In recent years, more and more scholars carried out researches on soft biological tissue cutting in order to improve the cutting performance of surgical instruments and reduce the surgery induced tissue damage. However, there is a lack of compressive review that focused on the recent advances in soft biological tissue manipulating technologies. Hence, this review paper attempts to provide an informative literature survey of the state-of-the-art of soft tissue manipulation processes in surgery. This is achieved by exploring and recollecting the different soft tissue manipulation techniques currently used, including mechanical, laser, waterjet and ultrasonic cutting and advanced anastomosis and reconstruction processes, with highlighting their governing removal mechanisms as well as the surface and subsurface damages

    Half-Metallic Silicene and Germanene Nanoribbons: towards High-Performance Spintronics Device

    Full text link
    By using first-principles calculations, we predict that an in-plane homogenous electrical field can induce half-metallicity in hydrogen-terminated zigzag silicene and germanene nanoribbons (ZSiNRs and ZGeNRs). A dual-gated finite ZSiNR device reveals a nearly perfect spin-filter efficiency of up to 99% while a quadruple-gated finite ZSiNR device serves as an effective spin field effect transistor (FET) with an on/off current ratio of over 100 from ab initio quantum transport simulation. This discovery opens up novel prospect of silicene and germanene in spintronics

    One-pot biosynthesis of N-acetylneuraminic acid from chitin via combination of chitin-degrading enzymes, N-acetylglucosamine-2-epimerase, and N-neuraminic acid aldolase

    Get PDF
    N-acetylneuraminic acid (Neu5Ac) possesses the ability to promote mental health and enhance immunity and is widely used in both medicine and food fields as a supplement. Enzymatic production of Neu5Ac using N-acetyl-D-glucosamine (GlcNAc) as substrate was significant. However, the high-cost GlcNAc limited its development. In this study, an in vitro multi-enzyme catalysis was built to produce Neu5Ac using affordable chitin as substrate. Firstly, exochitinase SmChiA from Serratia proteamaculans and N-acetylglucosaminosidase CmNAGase from Chitinolyticbacter meiyuanensis SYBC-H1 were screened and combined to produce GlcNAc, effectively. Then, the chitinase was cascaded with N-acetylglucosamine-2-epimerase (AGE) and N-neuraminic acid aldolase (NanA) to produce Neu5Ac; the optimal conditions of the multi-enzyme catalysis system were 37°C and pH 8.5, the ratio of AGE to NanA (1:4) and addition of pyruvate (70 mM), respectively. Finally, 9.2 g/L Neu5Ac could be obtained from 20 g/L chitin within 24 h along with two supplementations with pyruvate. This work will lay a good foundation for the production of Neu5Ac from cheap chitin resources
    corecore